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A  B  S  T  R  A  C  T : 

Many real-world machine learning applications 

require building models using highly imbalanced 

datasets. Usually, in medical datasets, the healthy 

patients or samples are dominant, making them the 

majority class, while the sick patients are few, 

making them the minority class. Researchers have 

proposed numerous machine learning methods to 

predict medical diagnosis. Still, the class imbalance 

problem makes it difficult for classifiers to 

adequately learn and distinguish between the 

minority and majority classes. Cost-sensitive 

learning and resampling techniques are used to deal 

with the class imbalance problem. This research 

focuses on developing robust cost-sensitive 

classifiers by modifying the objective functions of 

some well-known algorithms, such as logistic 

regression, decision tree, extreme gradient boosting, 

and random forest, which are then used to effi- 

ciently predict medical diagnosis. Meanwhile, as 

opposed to resampling techniques, our approach does 

not alter the original data distribution. Firstly, we 

implement the standard versions of these 

algorithms to provide a baseline for performance 

comparison. Secondly, we develop their 

corresponding cost-sensitive algorithms. For the 

proposed approaches, it is not necessary to change 

the distribution of the original data as the modified 

al- gorithms consider the imbalanced class 

distribution during training, thereby resulting in more 

reliable perfor- mance than when the data is 

resampled. Four popular medical datasets, including 

the Pima Indians Diabetes, Haberman Breast Cancer, 

Cervical Cancer Risk Factors, and Chronic Kidney 

Disease datasets, are used in the experiments to 

validate the performance of the proposed approach. 

The experimental results show that the cost- 

sensitive methods yield superior performance 

compared to the standard algorithms. 

1. Introduction 

 

The advances in healthcare technology and machine 

learning (ML) have saved several lives through efficient 

disease prediction, patient monitoring, and clinical 

decision making [1]. These advances have also made 

available numerous medical data. There is a need for 

further research and development to avoid the inaccurate 

prediction of diseases, which can be dangerous for the 

patients [2]. Meanwhile, in ML research, one problem 

that has been widely studied is the class imbalance prob- 

lem. By definition, the class imbalance can be referred 

to as a phe- nomenon where the majority class exceeds 

that of the minority class by a huge factor [3,4]. Research 

has shown that medical data are mostly imbalanced [5], 

where the majority class (negative or healthy patients) 

significantly outnumber the minority class (positive or 

sick patients). Usually, most ML algorithms used for 

binary classifications tasks assume an even distribution of 

the classes. Hence, when trained with imbal- anced data, 

the model gets dominated by samples from the 

majority 

 

class, thereby degrading the model’s performance [6]. 

This problem is so crucial that it is viewed as one of the 

ten big challenges in machine learning research [7]. 

Furthermore, ML algorithms assume that 

misclassification errors (false negative and false 

positive) are equal [8]. However, this assumption can be 

dangerous in imbalanced classification problems such as 

medical diagnosis, fraud detection, and access control 

systems [9]. For example, misclassifying a positive 

instance is more costly than misclassifying a negative 

sample. Meanwhile, resampling techniques have been 

used to balance the class distributions in imbalanced 

datasets [10]. Resampling methods aim to manually 

balance the data through undersampling the majority 

instances or oversampling the minority instances; 

sometimes, both methods are used. However, resampling 

techniques may omit some possible valuable data and 

increase the computational cost with unnecessary 

instances. In essence, both undersampling and 

oversampling methods changes the distribution of the 

various classes [11]. 
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Meanwhile, another method exists called cost-sensitive learning 

(CSL) that considers the cost associated with the misclassification of 

samples [12]. Rather than artificially creating balanced class distribu- 

tions via sampling techniques, cost-sensitive learning solves the imbal- 

anced class problem by utilizing cost matrices that outline the costs 

associated with the misclassification of the various classes [13]. By 

definition, cost-sensitive learning can be considered a subfield of ML 

that considers the cost of classification errors during model training [8]. 

Research has shown that cost-sensitive learning yields enhanced per- 

formance in applications where the dataset has a skewed class distri- 

bution [14]. 

Generally, ML algorithms aim to minimize error during training, and 

several functions can be utilized to compute the error or loss of a model 

on training data. In cost-sensitive learning, a penalty is placed for mis- 

classifications, and this is referred to as the cost. Cost-sensitive learning 

aims to minimize the misclassification cost of a model on the input data. 

Hence, instead of optimizing the accuracy, the algorithm tries to mini- 

mize the total misclassification cost [15]. Furthermore, recent research 

has suggested a high correlation between cost-sensitive learning and 

imbalanced classification; hence, the conceptual frameworks and algo- 

rithms utilized for cost-sensitive learning can be inherently employed 

for imbalanced classification tasks [16]. Also, some research works have 

demonstrated that when attempting to solve imbalanced classification 

problems, cost-sensitive learning leads to superior performance [11], 

and it is a more suitable approach than sampling techniques. 

Several research works have proposed numerous methods to classify 

imbalanced medical data, as stated in Refs. [5,14]. However, most of 

these methods focus on data resampling, such as in Refs. [3,17,18]. Even 

though there has been numerously published papers regarding the 

classification of imbalanced medical data, the focus has been on 

resampling methods. This research aims to provide a general overview 

of the imbalanced classification problem and ML algorithms suitable for 

such classification problems focusing on medical data. In the process, we 

develop some cost-sensitive ML algorithms to conduct a comparative 

study with standard algorithms. Also, while other research works on 

cost-sensitive learning have proposed single CSL algorithms, this 

research work implements numerous CSL algorithms and analyze the 

prediction performance between the standard and cost-sensitive ML 

algorithms on selected medical diagnosis datasets. The algorithms 

studied are logistic regression (LR), decision tree (DT), extreme gradient 

boosting (XGBoost), and random forest (RF). Meanwhile, we employ 

four medical datasets in this research, including the Pima Indians Dia- 

betes, Haberman Breast Cancer, Cervical Cancer Risk Factors, and 

Chronic Kidney Disease datasets. 

The rest of this paper is structured as follows. In Section 2, we briefly 

review some related works. Section 3 introduces the cost-sensitive 

learning framework and the algorithms utilized in this work. Section 4 

discusses the datasets and performance assessment criteria used in this 

paper. In Section 5, we present the experimental results, followed by 

analyzing and discussing these results. Lastly, Section 6 concludes the 

research and discuss some future research directions. 

 

2. Literature review 

 

This section provides a brief overview and review of some related 

works regarding the class imbalance problem and cost-sensitive learning 

approaches in medical diagnosis. 

 

2.1. Overview of the class imbalance problem 

 

Despite the recent advancements in machine learning and deep 

learning, the class imbalance problem remains a challenge for re- 

searchers [19]. In binary classification tasks with data examples from 

two classes or groups, the data is said to have a class imbalance when 

one group, the minority class, have lesser instances than the other group, 

the majority class. In numerous imbalanced classification problems, the 

class of interest is the minority class, i.e., the positive or sick patients in 

medical data. In medical diagnosis applications, most patients do not 

have the disease (i.e., majority or negative class) and predicting those 

with the disease is of paramount importance. Therefore, it is challenging 

to learn and make accurate predictions using imbalanced medical data, 

and non-traditional ML algorithms are usually required to obtain suit- 

able performance. Also, in imbalanced medical data, ML models usually 

overclassify the majority class because of their higher prior probability. 

Hence, the samples in the minority class are misclassified more than 

those in the majority class [19]. 

Numerous studies have proposed methods to solve the imbalanced 

classification problem. For example, Kuo et al. [20] proposed a tech- 

nique using the information granulation (IG) concept. The proposed 

algorithm balances the class ratio in the data by gathering the samples 

from the majority class into granules. The first step in the algorithm uses 

metaheuristic techniques such as genetic algorithm K-means, particle 

swarm optimization, and artificial bee colony K-means to generate a set 

of IGs. The second step uses a classifier to predict prostate cancer sur- 

vival rate using patient data. Similarly, Liu et al. [21] proposed a 

two-step ML technique to predict cerebral stroke using an imbalanced 

dataset. The first step employs random forest regression for missing data 

imputation, and the second step uses an automated hyperparameter 

optimization-based deep neural network to classify the imbalanced data. 

The approach achieved an enhanced cerebral stroke prediction. 

Several prior works to solve the class imbalance problem can be split 

into data-level and algorithmic-level approaches. Data-level approaches 

modify the class distribution of the data via resampling methods to 

create a balanced dataset. Though resampling techniques have been 

widely utilized, they have some shortcomings since they alter the orig- 

inal class distribution of the data [22]. Precisely, undersampling can 

remove important information that may be vital in the learning process, 

while oversampling can result in overfitting and sometimes increase the 

computational cost [22]. Blagus and Lusa [23] presented a detailed 

theoretical and empirical study of resampling, focusing on Synthetic 

Minority Oversampling Technique (SMOTE). The study applied SMOTE 

to several real and simulated imbalanced datasets to explain the 

behaviour of the algorithm. 

Meanwhile, the SMOTE algorithm has been widely applied in med- 

ical diagnosis to provide a class balance in imbalanced datasets. For 

example, Zeng et al. [24] combined SMOTE with the Tomek links 

technique to balance three medical datasets, which improved the eight 

classifiers’ performance in the study. Also, Xu et al. [25] proposed an 

improved method to classify imbalanced medical data by combining 

misclassification-oriented SMOTE (M-SMOTE) and edited nearest 

neighbor (ENN), while a random forest classifier is used to classify the 

samples. The study utilized ten imbalanced medical datasets, and the 

proposed method obtained improved performance compared to other 

classical resampling techniques. Shilaskar et al. [26] used SMOTE and 

modified particle swarm optimization (M-PSO) method to balance a 

medical dataset. The study employed five ML classifiers to classify the 

resampled data and analyze the resampling techniques’ robustness. 

In contrast to data-level approaches, algorithm-level methods alter 

the classifier, for example, ensemble learning and cost-sensitive 

learning. Ensemble learning methods utilize multiple learning algo- 

rithms to achieve better classification performance than when the in- 

dividual algorithms are used [5]. Some recently proposed ensemble 

learning methods for medical diagnosis [27,28] have achieved good 

performance. Zhu et al. [29] proposed a method to classify 

high-dimensional imbalanced medical data using an algorithm that 

combines random forest and feature selection techniques. The technique 

involves dimensionality reduction of the high dimensional data and 

classification of the target variables. The experimental results show that 

the approach achieved good classification accuracy when applied to 

high dimensional medical data. 

Furthermore, a few hybrid ensemble methods [5,17] have been 

proposed; these methods combine resampling and ensemble learning 
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techniques. An in-depth review of ensemble learning methods for 

imbalanced classification is presented in Ref. [30]. Although ensemble 

learning leads to improved performance, the combination of multiple 

classifiers is a complex process and result in higher training times. 

Recent research [11] has shown that cost-sensitive learning can ensure 

the algorithm correctly classifies the minority class and does not impact 

its complexity or computational time. 

 

2.2. Research on cost-sensitive learning for medical diagnosis 

 

Many research works on the application of machine learning to 

medical diagnosis usually employ traditional ML algorithms and 

improved algorithms via ensemble learning [27,29], artificial neural 

networks (ANN) [31], evolutionary algorithms [32], sparse autoen- 

coders (SAE) [33], among others. However, a few research works have 

employed cost-sensitive learning to medical diagnosis. Cost-sensitive 

learning involves modifying the algorithm’s objective function to 

ensure it focuses more on accurately predicting the minority class. 

Recently, cost-sensitive learning was applied to classify chronic kidney 

disease (CKD) in Ref. [34]; the research work proposed a cost-sensitive 

ensemble method that incorporates feature ranking capabilities. The 

proposed approach was compared with seven classification algorithms 

and eight feature selection techniques to demonstrate the robust per- 

formance of the CSL approach, which performed better than the other 

algorithms. The research concluded that cost-sensitive learning is an 

accurate and cost-effective approach to solving CKD’s imbalanced 

classification. 

Cost-sensitive learning has also been utilized to detect breast cancer, 

one of the most prevalent cancers among women. Breast cancer classi- 

fication is difficult to achieve due to the skewed class distribution of the 

dataset, thereby leading to poor performance when standard ML algo- 

rithms are applied for this classification. In Ref. [35], a cost-sensitive 

XGBoost was developed with application to breast cancer detection, 

and the study utilized four breast cancer datasets with uneven class 

distribution. The results showed that the cost-sensitive XGBoost ach- 

ieved excellent performance in all four datasets. Furthermore, a 

cost-sensitive decision tree classifier was developed by integrating game 

theory [36]. The algorithm used the concept of lever pulls from the 

multi-armed bandit game in choosing the features during tree formu- 

lation via a feed-forward framework to obtain features that maximize 

the reward. The proposed method was experimented on 15 datasets, 

including datasets to classify breast cancer, diabetes, heart disease, 

hepatitis etc. The experimental result showed that the proposed method 

obtained superior performance. 

Furthermore, Zieba et al. [37] proposed an adaptive boosting based 
support vector machine (SVM) to handle the imbalanced classification of 

Furthermore, Gan et al. [41] incorporated a tree-augmented naïve 

Bayes algorithm and cost-sensitive adaptive boosting (AdaCost) algo- 

rithm with application to imbalanced medical data. The proposed al- 

gorithm was tested on several medical data, including the cervical 

cancer risk factors dataset and Cleveland heart disease dataset. The 

experimental results show that the proposed algorithm performed better 

than some state-of-the-art methods. 

Cost-sensitive neural networks have also been developed; in 

Ref. [42], a cost-sensitive deep learning approach was proposed to 

predict hospital readmission. The early prediction of hospital read- 

mission ensures timely intervention of medical practitioners, which is 

necessary to prevent serious complications. The approach involves 

automatic feature learning of the patient data using convolutional 

neural networks (CNN) combined with a cost-sensitive multilayer per- 

ceptron (MLP) classifier. In addition, the cost-sensitive MLP ensured the 

class imbalance was considered during model training. Finally, the 

approach was applied to a real-world medical dataset. It achieved an 

area under the receiver operating characteristics curve (AUC) value of 

0.70, which was superior to the baseline models. 

Furthermore, Wu et al. [43] proposed a novel cost-sensitive radial 

basis function neural network (RBF-NN) for medical diagnosis. The 

method involves using a genetic algorithm and an enhanced PSO to 

optimize the parameters and structure of the cost-sensitive RBF-NN. 

When applied to five medical datasets, the experimental results show 

that the proposed method obtains better accuracy and AUC values than 

some state-of-the-art methods. Meanwhile, this paper aims to build on 

prior research by providing a detailed performance analysis of 

cost-sensitive learning algorithms with application to some medical 

datasets. 

 

3. Materials and methods 

 

In this section, we discuss the cost-sensitive learning approach and 

the various algorithms implemented in this research. 

 

3.1. Cost-sensitive learning 

 

For a binary classification problem, assuming D = {(xi, yi)}
n rep- 

resents a training set with n independent and identically distributed 

random variables, where xi ∈ X⫅R
d is the ith instance and yi ∈ Y = 

{—1, 1} is the ith equivalent dependent variable. To achieve the goal of 
classification, a predictor f : X→R is obtained, and a classification rule is 

often considered to be sign[f (x)]. To measure the performance, a 

nonnegative loss function L : R × Y→R is used. Therefore, the regu- 
larised empirical risk minimization (ERM) is expressed thus: 

lung cancer patients post-operation life expectancy. The method com- 

bines the advantage of ensemble learning and cost-sensitive SVM. The 

 
minJ(f , D) = min 

{
1 ∑n

 

 
 

L(f (xi), yi) + λN(f )

}

  
(1) 

proposed cost-sensitive classifier obtained enhanced performance when 
f ∈F f ∈F n 

i=1 

compared to other popular classifiers used to handle imbalanced data. 

Similarly, Ali et al. [38] developed a method that combines 

cost-sensitive learning and ensemble learning techniques to predict 

breast cancer. The ensemble learning methods considered in the study 

include GentleBoost, Bagging, and adaptive boosting. The experimental 

results show that the cost-sensitive GentleBoost performed better than 

other ensemble classifiers. 

In another study, Wan et al. [39] presented a novel cost-sensitive 

learning-based boosting algorithm called RankCost to predict imbal- 

anced medical data. The method uses a ranking function to maximize 

the difference between the majority and minority classes. The ranking 

function assigns higher scores to instances in the minority class than 

instances in the majority class. Zhu et al. [40] developed a cost-sensitive 

random forest to deal with the imbalanced class problem in medical 

diagnosis. The study employed several medical datasets, and the pro- 

posed algorithm showed improved performance, specifically in accu- 

rately predicting both the minority and majority classes. 

Here, λ denotes the regularisation parameter, whereas N(.) repre- 

sents the regularizer to prevent overfitting [44]. Generally, most ML 

algorithms achieve error minimization using the ERM configuration. 

These algorithms assume that all the misclassification errors have the 

same cost, resulting in classifiers that are not cost-sensitive. In reality, 

many machine learning problems, such as medical diagnosis [44] and 

fraud detection [45,46], are cost-sensitive. 

Cost-sensitive learning is a special type of learning where misclas- 

sification costs are taken into consideration. Cost-sensitive learning aims 

to minimize the total cost. It differs from cost-insensitive learning 

because it handles distinct misclassifications distinctively, i.e., the cost 

of classifying a sick patient as healthy is different from the cost of pre- 

dicting a healthy patient as sick. In contrast, cost-insensitive learning 

aims to minimize the error rate and neglect the various misclassification 

errors. Furthermore, cost-insensitive classifiers assume that all the 

misclassification costs are equal. However, this assumption is not valid 

in most ML applications [47]. For example, in predicting diseases such 
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∑ 

n 

n 
i=1 

FP i i FN i i 

 

Table 1 

The cost matrix. 

 

 

 

Actual negative (y = — 

1) 

 

 

Actual positive (y = 

1) 

 
n 

L(w) = [yi ln(P(yi)) + (1 — yi)ln(1 — P(yi))] (4) 
i=1 

 

where P(yi) denotes the predicted probability that y is true for i [50]. 
Predictive negative sign [f(x)] = C( — 1, — 1) = CTN C( — 1, 1) = CFN 

— 1 

Whereas the modified log-likelihood function can be represented as: 
n 

Predicted positive sign [f(x)] = 1 C(1, — 1) = CFP C(1, 1) = CTP 
L(w) = 

∑
[C y ln(P(y )) + C (1 — y )ln(1 — P(y ))] (5) 

 
 

as cancer, a misclassification (i.e., false negative) is costlier than a false 

positive because the patient can die due to delayed treatment occasioned 

by the misclassification. 

Cost-sensitive learning considers uneven misclassification costs. 

Most times, there is zero cost for correct classifications, that is, CTN = 

CTP = 0. Furthermore, classifying an instance incorrectly often have 
more cost than classifying it correctly (i.e., CFN > CTP and CFP > CTN); 

the cost matrix is shown in Table 1. For cost-insensitive classifiers, CFP = 

CFN, and for cost-sensitive classifiers CFP =/ CFN. Also, for medical 
diagnosis, the cost of false negatives is usually more than the cost of false 

positives (i.e., CFN > CFP). 

Meanwhile, it is possible to formulate a classification problem 

regarding risk minimization for a given cost matrix by modifying the loss 

function. By modelling the loss function to consider variable misclassi- 

fication cost, we can obtain a cost-sensitive classifier. Also, there are 

numerous methods designed by weighting the ERM loss function of type 

L(f(x), y) = L(yf(x)),  i.e.,  a  margin-based  loss  function  [48]. 

Margin-based loss functions are essential in binary classification 

because, unlike other loss functions, they do not consider the difference 

between the actual label and prediction. Rather, they penalize pre- 

dictions based on how well they correlate with the sign of the target. For 

a function f and tuple (x,y), the margin of the tuple obtained by f can be 

represented as yf (x) [48]. Therefore, a cost-sensitive classifier can then 
be formulated by minimizing the empirical risk: 

Jc(f , D) = 
1 ∑ 

g(yi)L(yi(h(yi)f (xi) + η)) + λN(f ) (2) 

From (2), g(yi) denotes a sample-based weight function while h(yi) 
denotes a margin-based weight function, and η signifies the weight 

constant, and these parameters are connected to the target variable and 

represent the inequality in misclassification costs [49]. Therefore, using 

the necessary weighting approach, the summation in (2) can be 

considered to evaluate the cumulative misclassification cost of the 

classifier f(x). Furthermore, diverse CSL methods can be proposed via 

the combination of different options of L, h, g, and η. However, in this 

paper, we develop CSL classifiers based on an instance where η = 0, 

h(y) = 1, and 

This setting usually leads to a type of logistic regression that is well 

suited for imbalanced classification problems, and this is called a cost- 

sensitive logistic regression. 

 

3.3. Cost-sensitive decision tree 

 

Decision tree algorithms are efficient for classification problems 

when the class distribution in the dataset is balanced. However, they 

have poor performance when trained with imbalanced data. Usually, in 

decision trees, the split points are selected to optimally separate samples 

into two classes having minimal mixing (also called purity). However, if 

both sets have more samples from the majority class, then the instances 

from the minority class are abruptly being neglected. Meanwhile, to 

avoid this problem, we can modify the criteria utilized for split point 

selection to consider class importance, resulting in a cost-sensitive de- 

cision tree [36]. The purity is usually computed using the Gini index or 

entropy [4]. This paper implements an instance of classification and 

regression tree (CART); hence, the purity is computed using the Gini 

index [28]. The process of calculating the purity metric entails 

computing the probability of an instance being wrongly classified by the 

split. And the probability calculations include the summation of the 

number of instances in the various classes that make up a group. 

Therefore, the criteria used for splitting can be updated to consider 

the purity of the split and be weighted by the importance of each class. 

We can achieve this by replacing the count of instances in the various 

groups with a weighted sum, where the coefficient is provided to weigh 

the sum. A large weight can then be given to the minority class, which is 

more important and has more influence on the node purity, and a lesser 

weight to the majority class, which has a lesser influence on the node 

purity. A general heuristic for the class weighting is to utilize the inverse 

of the class distribution of the dataset, i.e., for a class distribution of 

10:100 ratio for the minority group to the majority group, the inverse 

would be to use 100 for the minority group and 10 for the majority 

group. 

 

3.4. Cost-sensitive XGBoost 

 

The XGBoost is an algorithm that uses the gradient boosting frame- 

CFN — CTP if y = 1 

CFP — CTN if y = —1 
(3) 

work at its core. The XGBoost algorithm is an ensemble of decision trees, 

and it has been applied in diverse classification and regression tasks. It 

The subsequent sections will discuss how the selected algorithms are 

modified in line with this methodology to make them cost-sensitive. 

 

3.2. Cost-sensitive logistic regression 

 

Logistic regression in its standard form does not consider the 

imbalanced nature of some datasets; like most machine learning algo- 

rithms, it assumes an even class distribution. Therefore, it is crucial to 

modify the algorithm to consider the imbalanced class problem. To 

achieve this, a class weighting mechanism is employed to control how 

the algorithms’ coefficients are updated during training. The weighting 

configuration ensures the model is penalized more for errors made on 

samples from the minority class. Also, the model is penalized less for 

errors made on samples from the majority class. Usually, the log- 

likelihood function L(w) is expressed as: 

also has good performance in classification problems with uneven class 

distribution [51]. However, we can enhance the performance further by 

training the algorithm to focus more on the misclassification of the 

minority class, and the new algorithm is called a cost-sensitive XGBoost. 

Fortunately, for the XGBoost, the modification can be achieved by 

tuning a hyperparameter called scale_pos_weight in scikit-learn. In the 

XGBoost implementation, the default value for scale_pos_weight is 1.0. A 

good value for this hyperparameter would also be the inverse of the class 

distribution. We can use this hyperparameter to scale the errors made by 

the algorithm on the minority class during training, thereby prompting 

the algorithm to correct these errors. The model can therefore obtain 

improved performance when classifying instances in the minority class. 

 

3.5. Cost-sensitive random forest 

 

Random forest is an ensemble learning algorithm that is used for 

classification and regression. The algorithm constructs a multitude (or 

i=1 

g(y) = 

{
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Summary of the datasets. Confusion matrix. 

Dataset Total Number of samples in Number of samples in   Actual positive Actual negative 

 samples the majority class the minority class  Predicted positive True positive (TP) False positive (FP) 

PID 767 500 (65.19 %) 267 (34.81 %)  Predicted negative False negative (FN) True negative (TN) 

Breast 

Cancer 

305 224 (73.44 %) 81 (26.56 %)   

Cervical 

Cancer 

858 803 (93.59 %) 55 (6.41 %) 
the preprocessing carried out on the CKD dataset includes encoding 

CKD 400 250 (62.5 %) 150 (37.5 %) 
 

 

 

 

forest) of decision trees during training [52]. For classification tasks, the 

algorithm output the class that is the mode of the classes, and for 

regression, it outputs the mean prediction of the different decision trees. 

Furthermore, this algorithm rectifies the overfitting problem associated 

with decision trees. While the random forest is suitable for numerous 

applications, it has poor performance on imbalance classification tasks. 

Also, the data characteristics impact the performance of the random 

forest algorithm [28]. To modify the standard random forest to be 

cost-sensitive, we assign weights to the various classes. Also, we use the 

inverse of the class distribution, thereby forcing the algorithm to focus 

more on the minority class. 

 

4. Datasets and assessment criteria 

 
Four imbalanced medical datasets are used in this research, 

categorical attributes into numerical values and feature scaling using 

MinMax Scaler. 

To evaluate the performance of the various algorithms developed in 

this paper, we utilize some assessment metrics such as accuracy, preci- 

sion, recall, F-measure, and Cohen’s kappa coefficient. These assessment 

metrics can be derived from the confusion matrix: 

From the confusion matrix TP, TN, FP, and FN represent true posi- 

tive, true negative, false positive, and false negative, respectively. True 

positive and true negative is the number of correct positive and negative 

predictions, respectively [59]. False positive is an error where the model 

incorrectly predicts a healthy patient as sick. In contrast, a false negative 

is an error where the model fails to predict the presence of a disease 

when it is present. The confusion matrix (see Table 3) provides a sum- 

mary of the binary classification experimental results. The mathematical 

representation of the assessment metrics are detailed below: 

Accuracy = 
   TP + TN    

(6) 

TP + TN + FP + FN 

including the Pima Indians Diabetes (PID) [53], Haberman Breast 

Cancer [54], Cervical Cancer Risk Factors [55], and the Chronic Kidney 

Disease (CKD) [56] datasets obtained from the University of California, 

 

Precision 
  TP  

= 
TP + FP 

(7)
 

Irvine machine learning repository. Firstly, the PID dataset was prepared 

by the United States National Institute of Diabetes and Digestive and 

Kidney Diseases (NIDDK) after a study on female patients over 21 years 

old of the Pima Indians tribe in Arizona. The dataset aims to predict 

whether a patient has diabetes or not, using some diagnostic data such as 

Recall = 
  TP 

 

TP + FN 

F measure = 
2 × precision × recall 

precision + recall 

(8) 

 

 

(9) 

insulin level, age, body mass index, number of pregnancies etc. Sec- 

ondly, Haberman’s breast cancer aims to predict whether a patient 

would live for a minimum of five years or not after undergoing breast 

 

Kappa 
p0 — pc 

= 
1 — pc 

 

(10) 

cancer surgery. The dataset originated from the University of Chicago 

Hospital during a study on patients who underwent breast cancer sur- 

geries. The features of this dataset are age, the number of positive nodes 

detected, year, and survival status. 

Meanwhile, the cervical cancer dataset predicts if a woman would 

get cervical cancer based on certain risk factors, including medical 

history, lifestyle factors, and demographic details. We used the reduced 

feature set obtained by Fernandes et al. [57] for the cervical cancer data, 

which has been widely used in numerous cervical cancer studies. Lastly, 

the CKD dataset contains patient data such as blood pressure, red blood 

cells, serum creatinine, haemoglobin, anaemia, hypertension etc. Apollo 

where p0 represents the relative observed agreement among classifiers, 

whereas pc denotes the probability that agreement is due to chance [60, 

61]. The Cohen’s kappa coefficient (Kappa or κ) is a statistical test that 

was initially used to measure inter-rater reliability. Nowadays, Kappa 

statistic is utilized in ML mostly as a classifier performance measure 

because it compares the accuracy of a classifier to the accuracy of a 

random classifier. It was first introduced by Jacob Cohen [62] and has 

been widely used for binary and multiclass classification problems [63]. 

Kappa can also be obtained from the 2 × 2 confusion matrix used in ML 

and statistics to assess the performance of binary classifications: 

Hospitals prepared the dataset in Tamilnadu, India. The dataset contains 

two classes, i.e. CKD and non-CKD, which corresponds to patients with 
Kappa = 

 2 × (TP × TN — FP × FN)  

(TP + FP) × (FP + TN) + (TP + FN) × (FN + TN) 

(11) 

chronic kidney disease and those without chronic kidney disease. 

Table 2 describes the distribution of samples in the various datasets. . 

The breast cancer dataset does not contain missing values, while the 

cervical cancer and CKD dataset contain missing values. Meanwhile, the 

PID dataset does not explicitly contain missing values, but some bio- 

logical measurements have a value of 0. Such incorrect measurements 

can negatively impact ML algorithms. Hence, we used the nearest 

neighbor imputation to predict and replace the missing values. The 

nearest neighbor imputation, which is an implementation of the k- 

nearest neighbor algorithm, is an effective method to estimate missing 

values [58]. The algorithm imputes a new value by taking the nearby 

samples in the dataset and computing their average. The scikit-learn ML 

library contains the KNNImputer class that is used to achieve nearest 

neighbor imputation. The number of neighbors set by the ‘n-neighbors’ 
hyperparameter is fixed to be 5, and the distance measure is the 

Euclidean distance, set by the ‘metric’ hyperparameter. Furthermore, 

The minimum κ value is — 1, i.e., perfectly wrong predictions, and 

the maximum value is + 1, i.e., perfect classifications. Meanwhile, when 

κ ≈ 0, it implies the classifier’s predictions are similar to random 
guessing [63]. 

Accuracy is the most commonly used metric when assessing the 

performance of binary classifiers [59,64]. However, it is not a suitable 

metric for imbalance classification problems [65] because it is influ- 

enced mainly by samples from the majority class. For instance, pre- 

dicting all the samples as negative (majority class) in a highly 

imbalanced medical dataset would give a very high accuracy score. But 

in reality, the model has not learnt anything about the minority class. 

Hence, we consider other metrics that are more suitable for imbalanced 

classification tasks. Precision estimates the fraction of samples predicted 

to be positive that is truly positive. Recall (sensitivity or true positive 

rate) indicates the fraction of the positive examples correctly classified 
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Table 4 

Assessment of the performance of the algorithms on the PID dataset. 

Table 6 

Assessment of the performance of the algorithms on the cervical cancer dataset. 
 

Algorithm Accuracy Precision Recall F-Measure Kappa  Algorithm Accuracy Precision Recall F-Measure Kappa 

LR 0.751 0.689 0.710 0.699 0.739  LR 0.956 0.913 0.830 0.870 0.893 

CS LR 0.747 0.721 0.798 0.724 0.716  CS LR 0.940 0.942 0.978 0.960 0.914 

DT 0.703 0.630 0.711 0.668 0.665  DT 0.942 0.876 0.904 0.890 0.850 

CS DT 0.694 0.675 0.786 0.726 0.637  CS DT 0.933 0.918 0.920 0.919 0.831 

XGBoost 0.781 0.710 0.770 0.739 0.774  XGBoost 0.981 0.978 0.961 0.969 0.969 

CS XGBoost 0.832 0.767 0.855 0.810 0.820  CS XGBoost 0.986 1.000 1.000 1.000 0.982 

RF 0.758 0.725 0.710 0.717 0.716  RF 0.970 0.973 0.969 0.971 0.953 

CS RF 0.792 0.770 0.840 0.803 0.814  CS RF 0.988 1.000 1.000 1.000 0.989 

 

Table 5 

Assessment of the performance of the algorithms on the breast cancer dataset. 

Table 7 

Assessment of the performance of the algorithms on the CKD dataset. 
 

Algorithm Accuracy Precision Recall F-Measure Kappa  Algorithm Accuracy Precision Recall F-Measure Kappa 

LR 0.742 0.758 0.701 0.729 0.682  LR 0.943 0.950 0.973 0.961 0.930 

CS LR 0.754 0.750 0.857 0.800 0.896  CS LR 0.979 0.974 1.000 0.987 0.964 

DT 0.644 0.699 0.684 0.691 0.471  DT 0.929 0.946 0.950 0.948 0.910 

CS DT 0.716 0.720 0.829 0.771 0.774  CS DT 0.951 0.925 1.000 0.961 0.938 

XGBoost 0.729 0.788 0.762 0.775 0.710  XGBoost 0.940 0.957 0.921 0.939 0.959 

CS XGBoost 0.762 0.804 0.828 0.816 0.834  CS XGBoost 0..981 0.973 1.000 0.986 0.974 

RF 0.707 0.747 0.754 0.751 0.716  RF 0.947 0.972 0.946 0.960 0.939 

CS RF 0.803 0.878 0.900 0.889 0.848  CS RF 0.986 0.990 1.000 0.995 0.983 

 

as positive. The recall is an essential metric in imbalanced medical 

diagnosis because it solely depends on the minority class. 

Meanwhile, precision and recall are usually combined to form a 

single metric called F-measure, another vital metric when dealing with 

datasets with a skewed class distribution. F-measure is the harmonic 

mean of precision and recall [64]. Soleymani et al. [59] investigated 

performance evaluation metrics used for imbalanced classification, 

focusing on F-measure, which is preferred over most metrics. The study 

further developed a novel F-measure global evaluation space, where a 

classifier’s performance is represented by a curve that shows all the 

decision thresholds. The curves obtained by the F-measure space were 

then compared with precision-recall and ROC curves to demonstrate 

their suitability for imbalanced classification problems. 

Ferri et al. [61] presented a detailed study and comparison of several 

ML performance metrics. The authors performed an experimental 

analysis of 18 performance evaluation metrics to study their behaviour. 

The study identified suitable performance metrics for diverse classifi- 

cation scenarios, including the receiver operating characteristic (ROC) 

curve and the area under the ROC curve (AUC). Therefore, other metrics 

used in this research to compare the performance of the various models 

are the ROC curve and the AUC. The AUC measures the model’s ability 

to distinguish between the negative and positive classes [66]. Thus, a 

high AUC value demonstrates how good the model is at distinguishing 

the various classes. 

 

5. Results and discission 

 
In the cost-sensitive algorithms implemented in this paper, the 

misclassification cost relies on the sample class. denotes the misclassi- 

fication cost of the negative class, while CP denotes that of the positive 

class. Also, we utilize the assumption that the cost of correct classifica- 

tions is zero (CTN = CTP = 0), therefore, CN = CFP and CP = CFN. 

Furthermore, for the class weighting, a general heuristic was employed, 

i.e., using the inverse of the class distribution in the dataset. Therefore, 

the penalty for the wrong prediction of the minority class is more than 

the incorrect prediction of the majority class. This heuristic was chosen 

because it has led to improved results in previous works [8,10,49]. 

Furthermore, the cost-sensitive learning approach discussed in Section 

3.1 is adapted to four algorithms, logistic regression, decision tree, 

XGBoost, and random forest. The experiments were conducted using a 

16 GB RAM Windows computer with the following processor: Intel(R) 

Core(TM) i5-102100U CPU @ 1.60 GHz 2.10 GHz; the computations 

were carried out using the Python programming language and the 

scikit-learn ML library. The performance evaluation metrics discussed in 

Section 4 are utilized to measure the performance of the classifiers, and 

the repeated cross-validation, i.e., three repeats of 10-fold 

cross-validation, was used to evaluate the models. 

 

 

5.1. Experimental results 

 

The accuracy, precision, recall, F-measure, and Kappa assessment of 

the different classifiers are tabulated in Tables 4–7. Table 4 shows the 

performance when the classifiers are trained using the Pima Indians 

Diabetes dataset. Tables 5–7 show the performance when the classifiers 

are trained using the Haberman breast cancer, cervical cancer, and 

chronic kidney disease datasets. The first columns indicate the given 

classifier, while the various results are listed from the second to the last 

columns. The cost-sensitive version of the algorithms include cost- 

sensitive logistic regression (CS LR), cost-sensitive decision tree (CS 

DT), cost-sensitive XGBoost (CS XGBoost), and cost-sensitive random 

forest (CS RF). 

From the experimental results, the cost-sensitive classifiers obtained 

superior performance compared to the cost-insensitive classifiers. The 

increased precision, recall, and F-measure values of the cost-sensitive 

models indicate an improved prediction of the minority class. For the 

Pima Indians Diabetes dataset, the cost-sensitive version of XGBoost 

obtained the best performance, followed by the cost-sensitive random 

forest. However, for the breast cancer, cervical cancer, and CKD data- 

sets, the cost-sensitive random forest achieved the best performance, 

followed by the cost-sensitive XGBoost. Furthermore, it was observed 

that in all the datasets, the decision tree had the least performance for 

both the cost-sensitive and cost-insensitive models. 

Meanwhile, some of the cost-sensitive models made more wrong 

predictions in the majority class than their cost-insensitive models, as 

observed from the accuracy values. Specifically, in Table 4, there was a 

decline in the accuracy values of the cost-sensitive versions of the lo- 

gistic regression and decision tree. Also, in Table 6, the standard logistic 

regression and decision tree had a superior accuracy compared to their 

corresponding cost-sensitive models. This reduced accuracy values can 

be attributed to the wrong predictions in the majority class (false posi- 

tive) [67]. From the experimental results, it can be seen that most of the 

cost-sensitive algorithms achieved κ values between the range 
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Fig. 1. ROC curves of the various classifiers trained with the PID dataset. Fig. 4. ROC curves of the various classifiers trained with the CKD dataset. 

 

 

Table 8 

Comparison with other diabetes predictive models. 

Reference Method AUC Accuracy Precision Recall F- 

Measure 

Asniar 

et al. 

[69] 

Asniar 

et al. 

[69] 

SMOTE + 

C4.5 

 

SMOTE + 

SVM 

0.792 0.751 0.716 0.829 0.768 

 

 

0.740 0.741 0.754 0.712 0.732 

Chatrati 

et al. 

[70] 

SVM 0.700 0.75 – – – 

 

 

 

 

 

 

 

Fig. 2. ROC curves of the various classifiers trained with the breast can- 

cer dataset. 

Hayashi 

and 

Yukita 

[71] 

Khanam 

and Foo 

[72] 

Wei et al. 

[73] 

 

Syed and 

Khan 

[74] 

Abd El- 

Salam 

et al. 

[75] 

Pranto 

et al. 

[76] 

Pranto 

et al. 

[76] 

Recursive- 

rule 

extraction 

algorithm 

SVM + 

Feature 

selection 

Deep 

neural 

network 

Decision 

forest 

 

Bayesian 

Nets 

 

 

SMOTE + 

RF 

 

SMOTE + 

KNN 

– 0.8383 – – – 

 

 

 – 0.7682 0.761 0.768 0.759 

 

 – 0.7784 – – – 

 

 

0.822 0.789 0.464 0.400 0.430 

 

 

0.748 0.689 0.688 0.653 – 

 

 

 

0.760 0.790 0.680 0.860 0.680 

 

 

0.710 0.730 0.570 0.660 0.610 

This 

Paper 

CS XGBoost 0.830 0.792 0.770 0.840 0.803 

 
 

 
 

 

 

 

 

 

Fig. 3. ROC curves of the various classifiers trained with the cervical can- 

cer dataset. 

 

0.81–0.99, and according to McHugh et al. [68] the 0.81–0.99 range 

indicates near-perfect agreement between the raters. Also, only a few 

cost-sensitive classifiers obtained lower Kappa values than their corre- 

sponding cost-insensitive versions. These classifiers are CS LR and CS DT 

in Table 4 and CS DT in Table 6. Furthermore, Figs. 1–4 show the 

classifiers’ ROC curves and the corresponding AUC values. 

From the ROC curves and AUC values, it can be observed that the 

cost-sensitive models are more skilful in terms of predicting positive as 

positive and negative as negative, which further demonstrate the 

robustness of the cost-sensitive classifiers over the cost-insensitive 

classifiers. Finally, in Tables 8-11, the best performing cost-sensitive 

algorithms developed in this paper are used to compare with other 

research works, including resampling techniques, such as SMOTE and 

adaptive synthetic (ADASYN) sampling approach. 

From Table 8 , it is observed that the cost-sensitive XGBoost obtained 
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Table 9 

Comparison with other breast cancer predictive models. 

Reference Method AUC Accuracy Precision Recall F-Measure 

Gorunescu and Belciug [77] MLP – 0.761 – – – 
Asniar et al. [69] SMOTE + C4.5 0.730 0.705 0.726 0.655 0.689 

Asniar et al. [69] SMOTE + Naïve Bayes 0.671 0.620 0.773 0.336 0.469 

Kaushik et al. [78] Optimized SVM – 0.788 – – – 
Aljawad et al. [79] SVM – 0.744 0.747 0.737 – 
Cahyana et al. [80] ADASYN + Gradient Boosting 0.768 0.710 0.700 0.690 0.700 

Cahyana et al. [80] SMOTE + Gradient Boosting 0.763 0.670 0.670 0.640 0.650 

Cahyana et al. [80] Borderline SMOTE + Gradient Boosting 0.766 0.730 0.720 0.710 0.720 

This paper CS RF 0.880 0.803 0.878 0.900 0.889 

 

 

Table 10 

Comparison with other cervical cancer predictive models. 

Reference Method AUC Accuracy Precision Recall F-Measure 

Ijaz et al. [81] SMOTE + RF – 0.98925 0.98924 0.98936 0.98924 

Ebiaredoh-Mienye et al. [82] SAE + Softmax  0.970 0.980 0.950 0.970 

Nithya and Ilango [83] C5.0 + Feature selection 0.910 1.000 – – – 
Wu and Zhou [84] SVM – 0.941 – 100 – 
Abdoh et al. [85] SMOTE + PCA + RF – 0.957 – 0.977 – 
Abdoh et al. [85] SMOTE + RF – 0.960 – 0.975  

Mienye et al. [33] SAE + ANN – 0.980 0.960 0.980 0.970 

This paper CS RF 0.990 0.988 1.000 1.000 1.000 

 

 

Table 11 

Comparison with other CKD predictive models. 

Reference Method AUC Accuracy Precision Recall F-Measure 

Khan et al. [64] MLP – 0.972 0.974 0.973 0.973 

Rashed-Al-Mahfuz et al. [86] Feature Selection + XGBoost 0.985 0.985 0.986 0.974 0.979 

Ali et al. [34] Ensemble learning + Feature selection 0.982 0.967 0.843 0.986 0.976 

Ebiaredoh-Mienye et al. [82] SAE + Softmax  0.980 0.970 0.970 0.970 

Ogunleye and Wang [87] Feature Selection + Optimized XGBoost 1.000 1.000 1.000 1.000 1.000 

Chittora et al. [88] SMOTE + ANN 0.996 0.964 0.981 0.913 0.946 

Almustafa [89] Feature Selection + Naïve Bayes 0.989 0.976 0.970 0.988 0.968 

This paper CS RF 1.000 0.986 0.990 1.000 0.995 

 

comparable performance with other algorithms that used the Pima In- 

dians Diabetes dataset. Furthermore, the cost-sensitive random forest 

also achieved excellent performance compared to other research works 

that used the breast cancer, cervical cancer, and CKD datasets, as seen in 

Tables 9-11 , respectively. 

 

5.2. Discussion 

 

From Section 5.1, it is observed that the cost-sensitive algorithms 

performed better than the standard algorithms in terms of precision, 

recall, F-measure, and AUC. A significant factor contributing to this 

improved performance is that giving more weight to the mis- 

classifications of the minority class and penalizing the model more for 

wrong predictions of the minority class results in a model that pays more 

attention to this class. This forces the model to learn the instances in the 

minority class, which ultimately leads to a model that is skilful in pre- 

dicting that class. 

Secondly, the reduced accuracy in some cost-sensitive algorithms 

can be attributed to a few misclassifications in the majority class. These 

misclassifications impacted the accuracy since this metric indicates the 

ratio of correct predictions to the total predictions made. This is only 

normal as forcing the algorithm to focus on the minority class would 

give less attention to the majority class. However, the cost-sensitive 

learning algorithms achieved a much bigger goal by improving the 

correct predictions in the minority class. Lastly, except for the accuracy, 

an increase in the other performance evaluation metrics is observed in 

all the cost-sensitive algorithms compared to the cost-insensitive algo- 

rithms. Meanwhile, several research works on imbalance classification 

for medical diagnosis agree that it is more dangerous to misclassify a 

positive patient than misclassify a negative patient [10,67]. 

 

6. Conclusion 

 

This research studied cost-sensitive learning and developed some 

cost-sensitive algorithms by modifying their loss function to focus more 

on the minority class. Three repeats of 10-fold cross-validation was used 

during the training of the various algorithms. The research utilized 

performance metrics such as AUC, accuracy, precision, recall, F-mea- 

sure, and Cohen’s Kappa coefficient to evaluate the performance of the 

classifiers. The experimental results showed that the cost-sensitive ver- 

sions of random forest, XGBoost, and logistic regression obtained 

excellent performance in the four datasets compared to other algorithms 

and some recently proposed research works. The results obtained in this 

research demonstrates the potential of cost-sensitive learning in pre- 

dicting imbalanced medical data. Future research works would focus on 

further improving the prediction of the minority class while also 

ensuring the algorithm does not neglect the majority class in the process. 

Future research works could also employ a hybrid approach by 

combining cost-sensitive learning and resampling techniques such as 

SMOTE and adaptive synthetic sampling techniques and comparing the 

performance with instances where cost-sensitive learning and resam- 

pling techniques are used individually. Another potential future 

research direction is the combination of feature selection, resampling, 

and cost-sensitive learning methods. 
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